Все про устройство мостового крана: от грузовой тележки до электрооборудования. Охрана труда в условиях повышенной опасностиГрузоподъемные краны. Механизмы и аппаратура управления мостовыми кранами Аппараты управления основная теория мостового крана

09.03.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Министерство образования и науки РФ

Федеральное государственное образовательное учреждение

среднего профессионального образования

«Череповецкий лесомеханический техникум им. В.П. Чкалова»

Специальность 140613: "Техническая эксплуатация и обслуживание электрического и электромеханического оборудования"

Курсовой проект

по дисциплине « Электрическое и электромеханическое оборудование»

Тема: «Проект электрооборудования мостового крана »

Введение

Общая часть

1 История развития электропривода

2 Характеристика мостовых кранов

Расчетная часть

1 Расчет мощности приводного механизма

2 Выбор схемы управления

3 Выбор аппаратуры управления и защиты

4 Разработка схемы соединений

5 Устройство и назначение тормозного устройства

Техника безопасности при обслуживании мостовых кранов

Заключение

Литература

1. Общая часть

.1 История развития электропривода

Научно-технический прогресс, автоматизация и комплексная механизация технологических и производственных процессов определяют постоянное совершенствование и развитие современного ЭП. В первую очередь это относится к все более широкому внедрению автоматизированных ЭП с использованием разнообразных силовых полупроводниковых преобразователей и микропроцессорных средств управления. Постоянно появляются и новые типы электрических машин и аппаратов, датчиков координат переменных и других компонент, применяемых в ЭП.

Расширение и усложнение выполняемых функций ЭП, использование в них новых элементов и устройств, все более широкое включение ЭП в системы автоматизации технологических процессов требуют высокого уровня подготовки специалистов, занимающихся их проектированием, монтажом, наладкой и эксплуатацией.

Историю ЭП обычно начинают отсчитывать с разработки русским академиком Б. С. Якоби первого двигателя постоянного тока вращательного движения. Установка этого двигателя на небольшой катер, который в 1838 году совершил испытательные рейсы по Неве, является первым примером реализации ЭП. В дальнейшем ЭП стали применять, например, для наведения артиллерийской установки, перемещения электродов дуговой лампы, привода швейной машинки. Однако из-за отсутствия экономичных источников электроэнергии постоянного тока ЭП долгое время не находил широкого применения и основным являлся тепловой привод. Не изменило кардинально этого положения и создание в 1870 году промышленного электрического генератора постоянного тока, а также появление однофазной системы переменного тока.

Толчком к развитию ЭП явилась разработка в 1889 году М. О. Доливо-добровольского системы трехфазного тока и появление трехфазного асинхронного электродвигателя, что создало технические и экономические предпосылки для широкого использования электрической энергии, а значит, и ЭП.

Первой научной работой по теории электропривода явилась опубликованная в 1880 году в журнале «Электричество» статья русского инженера Д. А. Лачинова «Электромеханическая работа», в которой на научной основе были показаны преимущества электрического распределения механической энергии. В современном промышленном и сельскохозяйственном производстве, на транспорте, в строительстве, в быту применяются разнообразные технологические процессы, для реализации которых человеком созданы тысячи различных машин и механизмов.

Электрификация нашей страны и широкое применение в народном хозяйстве электроприводов началась после принятия и реализации государственного плана электрификации России - плана ГОЭЛРО, который предусматривает широкое строительство новых и реконструкцию старых электростанций, строительство новых линий электропередач, развитие электротехнической промышленности.

Дальнейшее развитие электрификации и автоматизации технологических процессов, создание высокопроизводительных машин, механизмов и технологических комплексов во многом определяется развитием электрического привода.

Одновременно происходило дальнейшее развитие и теории электропривода. Впервые как самостоятельная дисциплина теория электропривода представлена в книге С. А. Ринкевича «Электрическое распределение механической энергии», вышедшей в 1925 году.

Возможности использования современных ЭП продолжают постоянно расширяться за счет достижений в смежных областях науки и техники - электромашиностроение и электроаппаратостроение, электронике и вычислительной технике, автоматике и механике. Такое широкое применение ЭП объясняется целым рядом его преимуществ по сравнению с другими видами приводов: использование электрической энергии, распределение и преобразование её в другие виды энергии, разнообразие конструктивного исполнения, что позволяет рационально соединять привод с исполнительным органом рабочей машины.

К основным направлениям развития современного ЭП относятся:

─ Разработка и выпуск комплектных регулируемых ЭП с использованием современных преобразователей и микропроцессорного управления;

─ Повышение эксплуатационной надежности, унификация и улучшение энергетических показателей ЭП;

─ Расширение области применения регулируемого асинхронного ЭП и использование ЭП с новыми типами двигателей, а именно линейными, шаговыми, вентильными, вибрационными, повышенного быстродействия, магнитогидродинамическими и другие…

─ Развитие научно-исследовательских работ по созданию математических моделей и алгоритмов технологических процессов. А также машинных средств проектирования ЭП;

─ Подготовка инженерно-технических и научных кадров, способных проектировать, создавать и эксплуатировать современный автоматизированный электропривод.

Решение этих и ряда других проблем позволит существенно улучшить технико-экономические характеристики ЭП и создать тем самым базу для дальнейшего технического прогресса во всех отраслях промышленного производства, транспорта, сельского хозяйства и в быту.

1.2 Характеристика мостовых кранов

Мостовой кран - кран, у которого несущие элементы конструкции опираются непосредственно на крановый путь.

Мостовой кран в ЦРГ установлен внутри производственного корпуса и предназначен для подъема, опускания и перемещения различных грузов при производстве монтажных, ремонтных и погрузочно-разгрузочных работ. Мостовыми краны называются по отличительной конструкции продольных (главных) и поперечных (концевых) балок, выполненных в виде моста; сваренные между собой продольные и поперечные балки передвигаются по рельсовому пути, уложенному на подкрановые балки, закрепленные на консолях колонн здания (цеха, корпуса) или эстакады открытой площадки.

Металлические конструкции мостов выполняют двух- или однобалочными. Наибольшее применение нашли двух балочные мосты. Опорный мостовой кран передвигается по рельсам, уложенным на металлических или железобетонных подкрановых балках, опирающихся на колонны здания или открытую эстакаду. Подвесной мостовой кран передвигается по нижним полкам двутавровых балок, закрепленных под нижними поясами строительных ферм здания.

К основным параметрам мостовых кранов относятся: грузоподъемность, пролет моста, высота подъема, скорость подъема, скорость передвижения крана, скорость передвижения грузовой тележки, масса крана.

Электрооборудование мостовых кранов по назначению подразделяется на основное и вспомогательное. Основным является оборудование электропривода, вспомогательным - оборудование рабочего и ремонтного освещения, сигнализации, измерительной аппаратуры.

К основному электрооборудованию мостовых кранов относятся:

асинхронные электродвигатели трехфазного переменного тока;

аппараты управления электродвигателями - контроллеры, командоконтроллеры, контакторы, магнитные пускатели, реле управления;

аппараты регулирования частоты вращения электродвигателей - пускорегулирующие резисторы, тормозные машины;

аппараты управления тормозами - тормозные электромагниты и электрогидравлические толкатели;

аппараты электрической защиты - защитные панели, автоматические выключатели, реле максимального тока, реле минимального напряжения, тепловые реле, предохранители и другие аппараты, обеспечивающие максимальную и нулевую защиту электродвигателей;

аппараты механической защиты - конечные выключатели и ограничители грузоподъемности, обеспечивающие защиту крана и его механизмов от перехода крайних положений и перегрузки;

полупроводниковые выпрямители;

аппараты и приборы, используемые для различных переключений и контроля

Для привода механизмов на мостовых кранах в основном устанавливают асинхронные электродвигатели трехфазного переменного тока как с короткозамкнутым, так и с фазным ротором кранового исполнения. Эти электродвигатели отличаются повышенной перегрузочной способностью как в механическом, так и в электрическом отношении. Кратность максимального вращающего момента этих электродвигателей по отношению к номинальному при повторном кратковременном режиме с ПВ, равным 25%, составляет 2,5-3. Указанные электродвигатели изготавливают в закрытом исполнении, с внешним обдувом и с противосыростной изоляцией.

Контроллеры на мостовых кранах предназначены для управления работой (пуска, остановки, регулирования частоты вращения, изменения направления вращения) электродвигателей.

Применяют контроллеры силовые ККТ и магнитные дистанционного управления. Магнитные контроллеры предназначены в электрооборудовании мостовых кранов для управления электроприводом на расстоянии. Все переключения в них осуществляются при помощи контакторов. Магнитный контроллер обладает рядом преимуществ по сравнению с силовым контроллером. Магнитным контроллером любой мощности управляют с помощью малогабаритного командоконтроллера без применения значительного усилия машиниста (крановщика).

Контакторы магнитных контроллеров более износоустойчивые, чем контакты кулачковых контроллеров, Применение магнитных контроллеров позволяет автоматизировать операции пуска и торможения двигателя, что упрощает управление приводом и предохраняет двигатель от перегрузок. В комплект магнитных контроллеров асинхронными двигателями трехфазного переменного тока с фазным ротором, входят командоконтроллер, контакторная панель и пускорегулирующие резисторы. В отличие от силового контроллера командоконтроллер) не имеет контактов, рассчитанных на прохождение больших токов. Взамен них применены контактные мостики.

В электроприводе мостовых кранов применяют также трех полюсные контакторы для замыкания и размыкания силовых электрических цепей.

Для пуска, остановки и реверсирования асинхронных электродвигателей трехфазного переменного тока с короткозамкнутым ротором, а также для замыкания и размыкания (коммутации электрических цепей) используются в электрооборудовании мостовых кранов магнитные пускатели. Такие пускатели автоматически отключают двигатели при понижении напряжения и не допускают самопроизвольного включения двигателя после восстановления напряжения.

Электрооборудование мостовых кранов оснащено реле различного назначения и исполнения. В электрических схемах мостовых кранов встречаются реле: тепловое, максимального тока, времени, промежуточное, минимального тока, тепловое реле.

В цепи ротора электродвигателей для их плавного разгона, торможения и регулирования, частоты вращения применяют резисторы. Их устанавливают также в цепях управления и сигнализации, где они выполняют функцию ограничения напряжения или тока.

Для снятия силовых (замыкающих) пружин двух колодочных тормозов и растормаживания рабочих механизмов мостовых кранов применяют специальные тормозные электромагниты) и электрогидравлические толкатели.

Понижение напряжения с 380 В до 24В или до 12В для питания осветительных переносных ламп осуществляется на мостовых кранах с помощью однофазных трансформаторов. Для питания электронагревателей кабины машиниста (крановщика), опускания груза в режиме динамического торможения на кранах устанавливают трехфазные трансформаторы, обеспечивающие понижение напряжения с 380В до 36В. На кране имеются также измерительные трансформаторы для подключения амперметров. Необходимый для потребления в электрооборудовании мостовых кранов постоянный ток получают путем преобразования переменного тока в постоянный через выпрямители.

Среди применяемых на мостовых кранах видов электрооборудования особое место занимают конечные выключатели, непосредственно связанные с обеспечением безопасной работы кранов. На мостовых кранах применяют выключатели типов КУ, ВК, ВУ, ВПК.

Для защиты электрооборудования и электрических сетей от больших токов предусмотрены плавкие предохранители. На мостовых кранах применяют трубчатые предохранители без наполнения ПР-2 и с наполнением ПН2, НПР, НПН.

Предотвращение нарушения нормальных условий работы электрических цепей крана (перегрузка, короткое замыкание) производится с помощью автоматических выключателей.

Кроме электрических аппаратов, для частой коммутации цепей электроприводов на мостовых кранах применяют различные конструкции рубильников и выключателей периодической коммутации цепей управления и силовых цепей.

Выключатели периодической коммутации с ручным и ножным приводом используют соответственно для отключения линейного контактора и включения цепей управления. Выключатели с ручным приводом служат в качестве аварийных выключателей и имеют обозначение ВУ. Выключатели с ручным управлением применяют в ряде случаев в режиме командоконтроллеров.

Для передачи электрической энергии применяются провода, кабели и шнуры. Изолированный провод имеет токопроводящие жилы, заключенные в изолированную оболочку (резиновую, винилитовую, полихлорвиниловую). Кабели обычно имеют защитную герметическую металлическую (алюминиевую, свинцовую), резиновую или винилитовую оболочку. Для монтажа электропроводки на мостовых кранах применяют исключительно провод с изоляцией. При этом для предохранения от механических повреждений провода прокладывают в отдельных газовых трубах, металлических рукавах или плетеной металлической оболочке. Кабели и провода разделяются: по роду изоляции - неизолированные и изолированные (при этом существует большое количество видов изоляции); по материалу проводящих жил - медные, алюминиевые; по форме и конструкции проводящей жилы - сплошные или многопроволочные, круглые жилы, секторные или сегментные жилы; по роду защитных оболочек - кабели, освинцованные, с голой свинцовой оболочкой, со свинцовой оболочкой и с броней из стальной ленты.

Таблица 1. Технические характеристики мостового крана


2. Расчетная часть

2.1 Расчет мощности приводного механизма

Мостовые краны оборудованы механизмами подъема, передвижения моста и передвижения тележки.

Задачами выбора электродвигателей являются определение принципиальной возможности функционирования двигателя, обеспечение долговечности двигателя и удовлетворительных свойств пары механизм-двигатель, нахождение наиболее экономичного варианта.

Исходные данные, необходимые для расчета и выбора электродвигателя грузоподъемного механизма:

Грузоподъемность крана 35 т

Масса крюка 1 т

Высота подъема 25 м

Скорость подъема 12 м/мин

КПД механизма при нагрузке 0,8

КПД механизма при холостом ходе 0,35

Диаметр барабана лебедки 800 мм

Передаточное число полиспаста 4

Передаточное число редуктора 30

Производительность 200т/час

Напряжение переменное 380 В

Определим статический момент при подъеме груза по формуле :

где грузоподъемность, Н; -вес крюка, Н;

Диаметр барабана, м;

КПД механизма при нагрузке;

i р - передаточное число редуктора;

Число полиспаста.

Определим статический момент при опускании груза(тормозной спуск) по формуле:

(2)

Определим статический момент при подъеме крюка без груза по формуле:

(3)

где -КПД механизма при х.х.

Определим статический момент при опускании крюка без груза по формуле:

(4)

Определим средний эквивалентный момент по формуле :


Определим частоту вращения двигателя:

(6)

где скорость подъема, м/мин.

Определим среднюю эквивалентную мощность по формуле:

(7)

Определим число циклов за 1 час по формуле:

где Q -производительность, т/час;

G н - грузоподъемность, т.

Определим продолжительность цикла:


Определим время работы за одну операцию по формуле:

где -высота подъема, м;

Скорость подъема, м/сек

Определим время работы за один цикл по формуле:


Определим продолжительность включений по формуле:

(13)


Пересчитаем мощность двигателя при ПВр=83,3% на стандартную, при ПВст=60% по формуле:

(14)


Определим мощность электродвигателя с учетом коэффициента запаса по формуле:

(15)

где К з - коэффициент запаса (К з =1,05-1,1)

Исходя из данных расчетов выбираем два электродвигателя, так как кран с двумя подъемами. Данные заносим в таблицу.

Таблица 2. Технические данные двигателя

Тип двигателя

п ном, об/мин

cos,%М мах, Нм




(МТН7112-10-асинхронный двигатель краново-металлургический, работающий при повышенных температурах, Н-класс нагревостойкости, 7-габарит, 1-серия, 1-длина, 10-число полюсов)

Проверяем выбранный двигатель на перегрузочную способность:


где -максимальный момент выбранного двигателя, Нм;

М мах - максимальный момент рассчитанного двигателя, Нм;

М ном - номинальный момент


Выбранный двигатель подходит.

Построим нагрузочную диаграмму.

Рисунок 1. Нагрузочная диаграмма

2.2 Выбор схемы управления

Схемы управления крановыми двигателями могут быть симметричными и несимметричными относительно нулевого положения силового контроллера или командоконтроллера. Симметричные схемы применяют для приводов механизмов передвижения, а в некоторых случаях и для приводов механизма подъёма. В таких случаях при одинаковом по номеру положениях рукоятки контроллера при движении в разные стороны двигатель работает на аналогичных характеристиках. Несимметричные схемы используют для приводов механизмов подъёма, когда при подъёме и спуске груза требуется, чтобы двигатель работал на различных характеристиках.

Магнитные контроллеры применяются преимущественно для управления двигателями кранов с тяжелыми режимами работы.

Обмотка статора двигателя подключается через реверсирующие двухполюсные контакторы КМ1 и КМ2. Резисторы в цепях ротора двигателя выводятся посредством контакторов КМ3-КМ7. Схема позволяет получить: автоматический пуск на естественную характеристику в функции независимых выдержек времени, создаваемых реле КН1-КН3, питание катушек которых производится через выпрямитель от защитной панели; работу на трёх промежуточных скоростях; торможением противовключением.

В цепь якоря двигателя включены: обмотка возбуждения, катушка тормозного электромагнита и четыре ступени сопротивления, предназначенные для пуска, торможения и регулирования угловой скорости.

Схема контроллера обеспечивает работу двигателя в двигательном режиме и в режиме противовключения.

Защита силовой цепи и цепи управления достигается с помощью автоматических выключателей и предохранителей.

Все параметры автоматов должны соответствовать их работе как в обычном, так и в аварийном режимах, а конструктивное исполнение - условиям размещения.

Номинальный ток автомата должен быть не ниже тока продолжительного режима установки, а сам аппарат не должен отключатся при предусмотренных технологических перегрузках.

2.3 Выбор аппаратуры управления и защиты

электропривод мостовой кран тормоз

Для обеспечения безаварийной работы мостовые краны снабжают приборами и устройствами безопасности: концевыми выключателями; буферными устройствами; ограничителями грузоподъемности или массоизмерительными устройствами, указывающими массу поднимаемого груза; блокировочными устройствами; устройствами, предотвращающими столкновение кранов, которые работают на одних крановых путях; приспособлениями для исключения выпадения строп из зева грузовых крюков; звуковой и световой сигнализацией и средствами коллективной защиты от поражения электрическим током; ключ маркой.

Концевые выключатели применяют для автоматического отключения от электрической сети приводного электродвигателя механизма подъема груза при подходе крюковой подвески к главным балкам моста, а также при подходе к концевым упорам крана или грузовой тележки при номинальной скорости передвижения более 32 м/мин. После остановки механизма концевой выключатель не должен препятствовать движению механизма в обратном направлении.

Буферные устройства предназначены для смягчения возможного удара мостового крана или его тележки об упоры, а также кранов один о другой. Буфер содержит упругий элемент, который поглощает кинетическую энергию поступательно движущихся масс крана или тележки в момент соударения.

Ограничитель грузоподъемности служит для отключения приводного электродвигателя механизма подъема груза, если масса поднимаемого груза превышает паспортную грузоподъемность крана на 25%.

Для определения массы транспортируемого груза краном применяют массоизмерительное устройство.

Электрические и электромеханические устройства блокировки служат для повышения безопасности управления мостовым краном. К числу таких блокировок относятся: механическая блокировка вводного рубильника ключ маркой, электромеханическая блокировка двери кабины, потолочного люка, нулевая блокировка.

Для выбора аппаратов защиты нахожу номинальный ток двигателей грузозахватного механизма по формуле:

(16)

где Р- мощность двигателей, Вт;

U - напряжение, В;

соs -коэффициент мощности.

Выбираю автоматический выключатель.

Все параметры автоматов должны соответствовать их работе как в обычном, так и в аварийном режимах, а конструктивное исполнение- условиям размещения.

Номинальный ток автомата должен быть не ниже тока продолжительного режима установки, а сам аппарат не должен отключатся при предусмотренных технологических перегрузках.

Защита установки от перегрузок по току будет обеспечена, если номинальный ток автомата с тепловым расцепителем будет равен или насколько больше номинального тока защищаемого объекта.

Уставки тепловой и максимальной токовой защит электродвигателей должны соответствовать уровням соответствующих токов двигателей. Максимальная токовая защита не должна срабатывать при пуске двигателя, для чего ее ток уставки выбирается по соотношению .

Защита от перегрузки (тепловая защита) считается эффективной при

следующем соотношении ее тока уставки и номинального тока двигателя .

Для двигателя

Ток уставки электромагнитного расцепителя

Для двигателя

Данные автоматического выключателя заношу в таблицу.

Таблица 3. Технические данные автоматического выключателя


Выбираю предохранитель, для защиты от к.з.

Таблица 4. Технические данные предохранителя


Выбираю контакторы, по напряжению в силовой части схемы. Данные заношу в таблицу.

Таблица 5. Технические данные контакторов


Выбираю пакетные выключатели

Они выбираются по роду и величине напряжения, току нагрузки, количеству переключений, которое они допускают по условиям механической и электрической износостойкости, а также конструктивному исполнению.

Таблица 6. Технические данные пакетных выключателей


Выбираю кулачковый контроллер серииККТ-60А для управления асинхронным двигателем с напряжением 380В. Он имеет до 12 силовых контактов на номинальные токи до 63А, а так же маломощные контакты для коммутации сетей управления.

Цепь управления

Принимаю ток цепи управления 10А.

Выбираю командоконтроллер для коммутации нескольких маломощных электрических цепей.

Таблица 7. Технические данные командоконтроллера


Выбираю кнопки управления

Таблица 8. Технические данные кнопок управления


Выбираю магнитные пускатели, предназначенные для пуска, остановки и защиты асинхронных электродвигателей.

Таблица 9. Технические данные магнитных пускателей


Выбираем лампу накаливания

Таблица 11. Технические данные ламп осветительных

.4 Разработка схемы соединений
Таблица 13. Разработка схемы соединений

Наименование аппарата

Расположение аппарата

Условное обозначение

Вводной выключатель SF

В защитной панели

Плавкие предохранители

В защитной панели

Конечный выключатель SQ1- SQ5

В силовой цепи

Кнопки SВ1-SВ6

В кабине крановщика

Электродвигатель М

В силовой цепи

Контактор КМ

В защитной панели

Контактор «вперёд» КМ3

В защитной панели

Контактор «назад» КМ4

В защитной панели

Автоматический выключатель QS

В защитной панели

.5 Устройство и назначение тормозного устройства

В мостовых электрических кранах применяют колодочные и дискоколодочные тормоза. В колодочных тормозах тормозные колодки прижимаются к наружной поверхности тормозного шкива. В дискоколодочных тормозах тормозные колодки выполнены плоскими и прижимаются они к торцовым поверхностям диска. Тормоза мостовых кранов замкнутые, т.е. их колодки прижаты к тормозному шкиву или диску в нормальном состоянии, когда отключены приводной электродвигатель механизма и привод тормоза. Усилие замыкания тормоза (усилие прижатия колодок к шкиву или диску) создается постоянно действующей внешней силой предварительно сжатой замыкающей пружины. Эти тормоза размыкаются, освобождая механизмы крана, только при включении привода тормоза одновременно с включением приводного электродвигателя механизма. Крановые тормоза приводятся в действие автоматически при отключении приводного электродвигателя механизма. Тормоза механизмов мостовых кранов не создают сил сопротивления при работе механизма, а стопорят механизм только в конце движения при отключении от электрической сети приводного электродвигателя и удерживают механизм на месте при стоянке.

Действие крановых тормозов основано на использовании сил трения, возникающих при прижатии неподвижных колодок к вращающемуся тормозному шкиву или диску. Значение создаваемой при этом силы трения зависит в основном от усилия прижатия колодок к тормозному шкиву и коэффициента трения между шкивом и колодками. Колодка прижимается к тормозному шкиву под действием усилия замыкающей пружины. Это усилие зависит от степени поджатая, т.е. осадки пружины, и от длины пружины в сжатом состоянии. Регулируя длину пружины в сжатом состоянии, можно увеличить или уменьшить усилие прижатия колодок к тормозному шкиву.

Коэффициент трения зависит от свойств материалов, из которых изготовлены тормозные колодки и шкив, а также от состояния поверхности трения тормозного шкива - наличия смазочного материала, влаги, ржавчины, рисок и канавок. Для повышения стабильности коэффициента трения и увеличения срока службы тормоза тормозные шкивы подвергают термической обработке, чаще всего токами высокой частоты до заданной твердости. Тормозные колодки снабжают фрикционными накладками, изготовленными из смеси асбестовой ваты с различными каучуками или смолами. Такие накладки обладают стабильным и высоким значением коэффициента трения. Таким образом, при работе тормоза сила трения создается при прижатии фрикционных накладок к термообработанной поверхности трения тормозного шкива.

При торможении кинетическая энергия движущегося механизма преобразуется в тепловую энергию нагрева поверхности тормоза. В тяжелом и весьма тяжелом режимах работы кранов температура поверхности трения тормоза может достигать 200°С и более. Одним из недостатков фрикционных накладок крановых колодочных тормозов является то, что при сильном нагреве коэффициент трения накладки по шкиву начинает уменьшаться. При этом пропорционально уменьшается сила трения и увеличивается путь торможения, что может привести к аварии крана. По этой причине нельзя использовать мостовой кран в режиме более тяжелом, чем режим, указанный в его паспорте. Фрикционные накладки быстро изнашиваются, если усилие их прижатия к тормозному шкиву превышает заданное значение.

При работе тормоза в результате действия сил трения возникает тормозной момент. Тормозной момент зависит от силы трения и диаметра тормозного шкива. С увеличением диаметра шкива при одинаковых условиях прижатия колодок к шкиву и коэффициенте трения тормозной момент увеличивается. Поэтому на разных крановых механизмах установлены тормоза с разными диаметрами тормозных шкивов.

В зависимости от скорости начала торможения, тормозного момента и массы крана или поднимаемого груза грузовая тележка, кран или груз при торможении будут проходить до полной остановки определенный путь, который называют тормозным путем.

Электрогидравлический толкатель, являющийся приводом тормозов, состоит из корпуса, в который установлен цилиндр. Ниже цилиндра установлен насос с приводным электродвигателем. Электродвигатель асинхронный, трехфазный, фланцевого типа с короткозамкнутым ротором, мощностью 0,2 кВт. На валу электродвигателя установлены колесо насоса с крыльчаткой центробежного насоса. В конструкции крыльчатки применены прямые радиальные лопатки, которые обеспечивают нормальную работу толкателя независимо от направления вращения вала электродвигателя. Станина электродвигателя прикреплена болтами к корпусу электродвигателя. Места разъемов уплотняются кольцами из маслостойкой резины, от протекания масла по штоку также предусмотрено уплотнение. Масло в электродвигатель заливают через отверстие, закрываемое пробкой, а сливают через отверстие, расположенное внизу станины. Внутренняя полость толкателя наполняется трансформаторным маслом, после этого для удаления воздуха необходимо закрыть пробку и выполнить пятикратное включение толкателя под нагрузкой на шток 100-250 Н. Затем масло доливают до тех пор, пока оно не начнет пониматься по наливному каналу. При отсутствии питания в статорной обмотке электродвигателя гидротолкателя колодки под действием пружины через стержень, верхний рычаг и шток передают усилие на рычаг. Рычаги, поворачиваясь на пальцах, плотно прижимают колодки к поверхности тормозного шкива, создавая необходимую силу трения. При включении механизма включается и электродвигатель электрогидротолкателя. После выключения электродвигателя гидротолкателя пружина снова прижимает колодки к шкиву.

К преимуществам электрогидравлических толкателей в сравнении с электромагнитами относят возможность регулирования времени срабатывания тормоза, плавное нарастание тормозного момента, большое число включений, высокую долговечность, простоту эксплуатации, бесшумность и пр.

3. Техника безопасности при обслуживании мостовых кранов

Безопасная работа грузоподъемных кранов может быть обеспечена путем соблюдения требований нормативных документов по технике безопасности. Организация службы по соблюдению требований безопасности труда при эксплуатации кранов должна осуществляться в соответствии со СНиП 12-03-99 «Безопасность труда в строительстве. Часть I. Общие требования», «Правилами устройства и безопасной эксплуатации грузоподъемных кранов». Предприятие, эксплуатирующее кран, назначает ответственных за безопасное производство работ по перемещению грузов кранами на объектах.

Предприятие - владелец крана согласовывает проект производства работ для установки крана на объекте; проводит частичное и полное техническое освидетельствование крана; периодически проверяет (осматривает) состояние крана и опорного основания; проверяет соблюдение установленного Правилами Госгортехнадзора РФ порядка допуска рабочих к управлению и обслуживанию крана; участвует в комиссиях по аттестации и периодической проверке знаний требований безопасности труда машинистом (крановщиком) и обслуживающим персоналом, принимает меры по соблюдению требований безопасности труда при эксплуатации крана и устранению неисправностей его составных частей и сборочных единиц; назначает машиниста (крановщика) для работы на кране и обеспечивает его производственной инструкцией по безопасному ведению работ.

Предприятие, эксплуатирующее кран, обеспечивает объект проектом производства работ (ППР); составляет перечень применяемых мероприятий, обеспечивающих безопасное производство работ в зоне действия крана; устраивает подкрановые пути для движения крана у строящегося сооружения; проверяет выполнение технического освидетельствования съемных грузозахватных приспособлений и их маркировку; назначает стропальщиков для обвязки и зацепки грузов при их перемещении краном; определяет и указывает машинисту и стропальщикам место и порядок безопасного складирования и монтажа конструкций; инструктирует машиниста (крановщика) и стропальщиков по вопросам безопасного выполнения предстоящей работы; не допускает без наряда-допуска производства монтажных и погрузочно-разгрузочных работ кранами вблизи линии электропередачи; обеспечивает в соответствии с нормами освещение места производства работ в ночное время; не допускает в рабочую зону крана посторонних лиц; обеспечивает сохранность крана по окончании смены.

В Инструкции по монтажу указывается, при какой скорости ветра должны быть прекращены работы по монтажу, демонтажу крана. Запрещается проводить монтажные работы на высоте при гололеде, в ночное время, в грозу, туман и при температуре воздуха ниже -20° С. Вести монтаж ночью можно только в случае аварии. Запрещается спускать или поднимать башню ночью. При работе в темное время монтажная площадка должна быть освещена. При гололеде монтажная площадка должна быть посыпана песком. Кран перед подъемом очищают от снега и льда. Не допускается применение обледенелых канатов для строповки. Управлять механизмами крана при монтаже разрешается только монтажникам, имеющим соответствующее удостоверение. При монтаже и демонтаже крана запрещается: крепить элементы конструкции неполным количеством болтов; устанавливать кран у котлована с неукрепленными откосами; вести в зоне монтажа или демонтажа какие-либо работы, не относящиеся непосредственно к монтажу.

Для уменьшения воздействия опасных и вредных производственных факторов работы по перемещению грузов кранами, техническому обслуживанию и ремонту машинист (крановщик) должен выполнять, применяя средства индивидуальной защиты. Основным средством защиты от производственных загрязнений и механических повреждений служит спецодежда: костюм мужской или женский, состоящий из куртки с брюками или полукомбинезоном. Спец обувь предназначена для защиты ног машиниста от холода, механических повреждений, масла и т.п. Для работ на открытом воздухе в зимнее время машинист (крановщик) одевает ватную куртку, брюки и валенки, которые весной он сдает на летнее хранение. Для защиты рук от механических повреждений при проведении работ по техническому обслуживанию и ремонту крана машинист должен пользоваться специальными рукавицами. Каска необходима для защиты головы от механических повреждений и поражения электрическим током. Машинисту (крановщику) выдается каска темного или оранжевого цвета. Каски белого цвета предназначены для менеджеров. Каски могут снабжаться устройствами для защиты от шума. При проведении работ на высоте машинист (крановщик) должен пользоваться предохранительным поясом.

Перед началом работы машинист (крановщик) осматривает кран, проверяет исправность тормозов и приборов безопасности, знакомится с рабочей зоной на объекте и устанавливает кран в ней в соответствии с проектом производства работ, проверяет исправность подкрановых путей, грузозахватных устройств; определяет маркировку перемещаемых грузов, знакомится с опасными грузами и веществами. Машинист (крановщик) участвует в ЕО1) просматривает записи в вахтенном журнале и, если может, устраняет зафиксированные в этом журнале неполадки крана или сообщает о них до начала работы лицу, ответственному за исправное состояние крана. Запрещается приступать к работе, если при этом выявлены неисправности: трещины или деформация в несущих металлоконструкциях крана ослабленные зажимы в местах крепления канатов, сверхнормативные обрывы проволок или поверхностный износ, повреждения деталей тормоза грузовой лебедки и устройств безопасности.

Перед пуском крана с него убирают все приспособления, инструменты и незакрепленные детали; убеждаются, что правильно и надежно установлены плиты противовеса и балласта, рельсовые противоугонные захваты; удаляют людей с крановых путей.

Во время работы машинист (крановщик) выполняет следующее:

не допускает на кран посторонних лиц;

проверяет уклон площадки, на которой стоит кран; допускается уклон не более 3°;

соблюдает расстояние от бровки котлована или траншеи до ближайшей опоры (колеса, гусеницы, выносной опоры) крана;

выполняет рабочие движения по сигналу стропальщика;

контролирует массу поднимаемых грузов и вылет по указателю в кабине или закрепленному на стреле);

перед подъемом груза предупреждает стропальщика и всех находящихся около крана о необходимости освободить рабочую зону крана;

устанавливает грузозахватное устройство так, чтобы исключить косое натяжение грузового каната (при подъеме груза расстояние между ним и крюковой подвеской должно быть 0,5 м);

перемещаемые в горизонтальном направлении грузы приподнимает на 0,5 м выше встречающихся на пути предметов; следит за отсутствием людей в просвете между поднимаемым или опускаемым грузом и выступающими частями, зданий и транспортных средств;

приостанавливает работу крана при неравномерной укладке каната или спадании его с барабана.

Запрещается:

без наряда-допуска устанавливать кран или перемещать груз на расстояние ближе 30 м от крайнего провода действующей линии электропередачи;

одновременно работать имеющимися на кране двумя механизмами подъема (основном и вспомогательным);

выполнять рабочие движения на взрывопожароопасной территории без присутствия лица, ответственного за перемещение грузов кранами;

допускать к обвязке и зацепке грузов рабочих, не имеющих прав стропальщика;

поднимать грузы неизвестной массы;

поднимать защемленные грузом грузозахватные устройства и железобетонные изделия с поврежденными петлями.

Перемещать грузы электромагнитной плитой разрешается только в специально отведенных местах склада (пункта грузопереработки). При разгрузке автомашин не разрешается перемещать электромагнитную плиту с грузом над кабиной автомашины, а при разгрузке железнодорожных вагонов - над составом. Необходимо постоянно следить за правильностью намотки кабеля подъемного электромагнита на барабан. Машинист не имеет права покидать кабину, если на электромагнитной плите есть груз. При работе с грейфером необходимо следить, чтобы челюсти плотно закрывались. Нельзя допускать сильного ослабления грузового каната и выхода его из ручья барабана.

При приближении грозы и ураганного ветра опускают груз и прекращают работу.

По окончании смены машинист (крановщик) обязан: не оставлять груз в подвешенном состоянии; поставить кран в отведенное для него место и закрепить его; остановить силовую установку и при питании крана от внешнего источника выключить рубильник; сообщить своему сменщику о всех неполадках в работе крана и сделать соответствующую запись в вахтенном журнале. При работе в стесненных условиях соблюдают ограничение рабочих движений крана, выставляют предупреждающие и запрещающие знаки безопасности.

Ответственный за безопасное производство работ на строительной площадке и инженерно-технический работник, осуществляющий надзор за безопасной работой кранов, обеспечивают своевременное оповещение машиниста (крановщика) о резких переменах погоды (пурга, ураганный ветер, гроза, сильный снегопад). Нельзя оставлять без надзора кран с работающей силовой установкой и открытыми дверцами кабин.

Техническое обслуживание (ТО) кранов в условиях строительной площадки приходится выполнять при отсутствии постоянных рабочих мест и в различных погодных условиях. Это представляет повышенные требования к обеспечению безопасных условий труда. Для выполнения ТО выбирают ровную (чтобы исключить возможность самопроизвольного перемещения машины под воздействием силы тяжести) свободную от посторонних предметов площадку с твердым нескользким покрытием на расстоянии не менее 50 м от мест хранения нефтепродуктов. Под колеса кранов подкладывают колодки, стрелы опускают до упора. С электрифицированных кранов снимают напряжение и вывешивают предупредительные надписи. Пользуются только исправными инструментами, домкратами и приспособлениями. Инструмент, запасные части, приспособления их нужно поднимать на кран только в специальной сумке или с помощью веревки. Устанавливают сборочные единицы и составные части на подставки и козлы, испытанными на грузоподъемность. Операции ТО с ходовыми колесами производят после выпуска воздуха из камер. При мойке крана под большим давлением струи отлетающая грязь может попасть в лицо и глаза. Сборочные единицы очищают сжатым воздухом, пользуясь защитными очками. Во время заправки крана машинист (крановщик) становится так, чтобы ветер не относил на него пары и брызги топлива. Операцию выполняют в рукавицах. При доливе воды в систему охлаждения пробку радиатора открывают медленно, чтобы пар из него выходил постепенно во избежание ожога горячим паром лица и рук. Зимой для заливки горячей воды используют металлические ведра с насадкой, позволяющим направлять струю воды. Применять самодельные ведра (например, из резиновых камер) запрещается. При использовании пара для нагрева двигателей соблюдают меры предосторожности. Шланг с паром, вставив в горловину радиатора, закрепляют, чтобы предупредить его выпадение. Масло в картере и рабочая жидкость в гидрооборудовании при работе крана находятся в горячем состоянии, поэтому их сливают осторожно в специальные емкости.

Для предотвращения самопроизвольного открывания дверей кабин замки должны быть исправными. Двери кабин должны плотно закрываться, так как через отверстия просачивается пыль и загрязняется воздух. Особое внимание обращают на наличие чехлов в местах прохождения рычагов и педалей. Подушку и спинку сиденья содержат в хорошем техническом состоянии, не допускается провалов, выступающих пружин и острых кромок.

Грузоподъемные краны имеют электрический привод и относятся к электроустановкам напряжением 1000 В. «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок» потребителей требуют, чтобы машинисты мостовых и электрических грузоподъемных кранов имели определенные знания по электротехнике и электрооборудованию кранов, знали и умели оказывать первую помощь при поражении электрическим током. Тело человека является хорошим проводником электрического тока, в зависимости от многих причин и условий воздействие электрического тока может быть от легкого, едва ощутимого судорожного сокращения мышц пальцев рук, до прекращения работы сердца или легких, т.е. смертельного поражения.

Поражение электрическим током происходит при замыкании электрической цепи через тело человека, поэтому машинист (крановщик) должен быть обеспечен защитными средствами. По степени надежности изолирующие защитные средства делятся на основные и дополнительные. Основными считаются те защитные средства, изоляция которых может надежно выдерживать напряжение установки и посредством которых допускается непосредственное прикосновение к токоведущим частям находящимся под напряжением. Дополнительными являются защитные средства, служащие для усиления действия основных средств и для защиты от напряжения прикосновения и шагового напряжения. В крановых электроустановках основными защитными средствами являются изолирующие перчатки, а дополнительными средствами - изолирующие галоши и коврики. При поражении электрическим током необходимо как можно скорее освободить пострадавшего от действия тока, так как от продолжительности этого действия зависит тяжесть электротравмы. При этом необходимо помнить, что прикасаться к человеку, находящемуся под напряжением, можно только при условии принятия необходимых мер предосторожности. Меры первой помощи будут зависеть от состояния пострадавшего после освобождения его от действия электрического тока.

Заключение

Мною разработан проект электрооборудования мостового крана грузоподъемностью 35т.

В общей части курсового проекта указаны основные требования, предъявляемые к электрооборудованию крана, который предназначен для производства грузоподъемных работ. С помощью мостового крана достигаются высокие темпы производства. Он обеспечивает обслуживание большой площади рабочей зоны, равной ходу грузовой тележки, умноженной на длину подкранового пути.

В расчетной части проекта произведен расчет и выбор мощности электродвигателя грузоподъемного механизма. Произведен проверочный расчет элементов силовой цепи. Выбрана аппаратура защиты и управления.

Выбранное электрооборудование соответствует нормам ПУЭ.

Коммутационная аппаратура может осуществлять защиту потребителей от перегрузки и коротких замыканий.

В разделе «Техника безопасности» описаны вопросы техники безопасности при обслуживании кран.

Считаю, что выбранное мной электрооборудование позволит уменьшить простои при работе крана, улучшить эксплуатационные свойства и повысить надежность и безопасность работы.

Литература

1. Александров К.К., Кузьмина Е.Г. Электротехнические чертежи и схемы - М.: Энергоатомиздат, 1990, 288 с.

Барыбин Ю.Г., Федоров Л.Е. Справочник по проектированию электроснабжения - М.: Энергоатомиздат, 1990, 576 с.

Карпов Ф.Ф, Козлов В.Н. Справочник по расчету проводов и кабелей - М.: Энергия, 1969, 264с.

Зимин Е.Н. Электрооборудование промышленных предприятий и установок - М.: Энергоатомиздат, 1991

5. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок - СПб.: Издательство ДЕАН, 2001, 208 с.

6. Пижурин П.А. Справочник электрика лесозаготовительного предприятия - М.: Лесная промышленность, 1988, 363 с.

Пижурин П.А. Электроборудование и электроснабжение лесопромышленных и деревообрабатывающих предприятий - М: Лесная промышленность, 1993, 263с.

Правила устройства электроустановок - М.: Главгосэнергонадзор России, 2001, 6 издание.

Правила устройства электроустановок - СПб.: Издательство ДЕАН, 2002, 928с.

Защитное заземление - соединение корпусов электрооборудования с заземляющим устройством. Это одна из основных мер электробезопасности людей, обслуживающих грузоподъемные механизмы. Все металлические части электрооборудования: корпуса электродвигателей и контакторные панели, кожухи всех аппаратов, кабели, панели, щиты, а также металлические конструкции кранов - могут оказаться под напряжением вследствие нарушения изоляции и потому должны надежно заземляться (рис. 8).

В установках с напряжением 380/220 В и 220/127 В вместо заземления используют зануление, т. е. присоединение указанных выше корпусов электрооборудования к заземленному нулевому проводу.

В качестве заземлителей используются вертикально введенные в землю металлические трубы диаметром 25 - 35 мм, длиной 2,5 м или уголки такой же длины. Расстояние между заземлителями принимается равным не менее 2,5 - 3,0 м. Для предупреждения коррозии заземлители омеднивают или оцинковывают. Количество заземлнтелей определяется расчетами (учитывается состояние грунта).

Заземлители соединены между собой приваренными металлическими полосами и образуют контуры заземления, которые должны периодически проверяться.

Заземляющие проводники соединяют корпуса электрооборудования с заземлителем. Мостовые краны, кроме действующих во взрывоопасной среде, заземляются через подкрановый путь. Сопротивление заземления в сетях с рабочим напряжением до 1000.В, к числу которых относятся электрические краны, не должно превышать 4 Ом вместе с сопротивлением контура.

Механизмы и аппаратура управления мостовыми кранами

Для пуска (остановки), изменения направления и скорости вращения двигателей механизмов мостовых кранов применяются контроллеры. По конструкции и исполнению контактной части контроллеры бывают барабанные и кулачковые. Барабанные контроллеры используются для легких и средних режимов работы (до 120 включений в час), кулачковые - для более тяжелых режимов (до 600 включений в час). Для особенно тяжелых режимов при меняютея магнитные контроллеры, управляемые командоконтроллерами на расстоянии.

Наиболее простая конструкция контроллеров - с механическим приводом. Все переключения в них выполняются кранов- щиком вручную. Правилами предусмотрена, что аппараты yправления грузоподъемной машиной должны быть выполнены и установлены таким образом, чтобы управление было удобным и не затрудняло наблюдение за грузозахватным органом и грузом. Это определяется местом размещения кабины на кране с учетом условий выполняемой работы и необходимой обзорности, конструкцией и углом наклона световых.проемов в кабине по отношению к обслуживаемой площади, расположением сидения крановщика. Средства управления для облегчения ориентировки отличаются формой, размерами, цветом. Контрольные приборы размещаются в удобном месте, на уровне глаз крановщика, чтобы он хорошо их видел.

Важное значение имеет надежная фиксация контроллеров во всех рабочих и нулевом положениях. Направление движений рукояток, рычагов, маховиков должно указываться на этих механизмах и аппаратах в виде ярких, хорошо видимых надписей и стрелок, быть рациональным и по возможности соответствовать направлению вызываемых ими движений. Да это и понятно. Скажем, если бы крановщик, приводя в движение механизм передвижения моста в левую от себя сторону, поворачивал маховик контроллера.влево, а кран при этом двигался бы вправо, это дезориентировало бы. Такое управление искусственно вызывает излишнее напряжение, требует особой сноровки, нередко ведет к несчастным случаям и не рекомендуется Правилами.

Контакторы - аппараты, служащие для частых дистанционных включений и выключений тока в электрической цепи. Использование контакторов на кранах с тяжелым режимом позволяет производить до 800 включений в час. В одном контакторе бывает несколько парных силовых и вспомогательных контактов. Силовые контакты применяются для разрыва основного тока, а вспомогательные - для управления в оперативных схемах и называются блок-контактами.

Сопротивления , применяемые на кранах, служат для плав. ного пуска электродвигателей и регулировки числа оборотов. Они включаются в цепь якоря двигателей при постоянном токе или в цепь ротора при переменном токе. Изготовляются сопротивления из чугунных элементов или проволоки с большим удельным сопротивлением (вихром, фехраль и др.). Обычно ящики сопротивления нагреваются до высокой температуры. Поэтому они зашиваются металлической сеткой и устанавливаются так, чтобы рабочие не прикасались к ним во избежание ожогов. Осмотр или ремонт сопротивления может быть разрешен только после того, как снято напряжение с крана. Сейчас все больше применяют краны с автоматическим и дистанционным управлением. Дистанционное управление, кранами исключает пребывание людей в условиях высокой температуры окружающей среды, запыленной атмосферы, облегчает их труд, делает его более безопасным.

Кабины управления. Кабина управления краном - рабочее место крановщика. Ее устройство и размещение должно соответствовать Правилам и гарантировать безопасную работу. Кабина должна быть просторной, обеспечивать свободный доступ к оборудованию и вмещать при необходимости, кроме крановщика, стажера или ремонтника; устроена и размещена так, чтобы крановщик со своего рабочего места мог наблюдать за грузозахватным органом н грузом, беспрепятственно просматривать обслуживаемую краном площадь. В некоторых конструкциях кабин для улучшения обзорности настил пола делают из толстого (около 20 мм) плексиглаза, через который свободно просматривается вся зона под кабиной крана. В этих случаях нижняя часть кабины, на которую становится крановщик, должна быть защищена крепкими решетками, способными надежно выдержать его вес.

Важное условие безопасности - расположение кабины со стороны, противоположной главным крановым троллеям. Допускаются исключения в тех случаях, когда троллеи недоступны для случайного прикосновения к ним из, кабины, с посадочной площадки и лестниц.

Кабины электромостовых кранов должны иметь высоту не менее 1,8 м. Верхнее перекрытие кабины - сплошное или сетчатое (ячейка не более 20X20 мм), защищающее от падения в нее случайных предметов. Правилами предусматривается сплошное ограждение кабины со всех сторон высотой не менее 1 м. При выполнении в кабине работ только сидя ее высоту разрешается уменьшить до 1,5 м, а ограждение обшивки - до 0,7 м. Пол должен быть сплошным, деревянным или каким-либо другим, неметаллическим и покрыт резиновыми диэлектрическими ковриками размером не менее 500X700 мм, причем размещать их следует только в местах обслуживания электрооборудования.

На некоторых предприятиях работают краны, у которых расстояние между задней стенкой кабины и максимально выступающими в ее сторону предметами менее 400 мм. В таких случаях, чтобы избежать травмирования крановщика (стажера, дублера) в опасной зоне, заднюю сторону кабины следует ограждать по всей ширине и на высоту 1800 мм. Боковые стороны, примыкающие к задней стенке, ограждаются на ширину не менее 400 мм.

Предъявляются также требования и к устройству входной двери в кабину крана. Дверь должна выполняться распашной или раздвижной и иметь запор изнутри. Дверь распашного типа открывается только внутрь.

Полезная информация: Современное производство кранов мостовых на сайте завода kranbalka.su

Электрические схемы мостовых кранов


Электрические схемы бывают принципиальные или элементные, монтажные или маркированные. Принципиальные схемы отражают взаимодействие элементов электрооборудования, указывают последовательность пппупжирния тпкя по силовым цепям и аппаратам

управления. Пользоваться принципиальными схемами удобно при ремонте и наладке. Аппаратура в них просто и четко разбита на отдельные самостоятельные цепи, и они легко запоминаются. Электрические цепи на принципиальных схемах подразделяются на силовые, изображаемые толстыми линиями, и цепи управления, выполненные тонкими линиями. На монтажных или маркированных схемах в отличие от принципиальных изображают электрическую проводку крана и взаимное расположение электрооборудования.

Электрическая защита. В качестве электрической защиты, как уже отмечалось выше, применяются защитные панели ПЗКБ-160 и ПЗКН-150. Некоторые заводы выполняют защитные панели собственной сборки. Независимо от этого каждая такая сборка представляет собой укомплектованную панель, на которой смонтированы: трехполюсный рубильник, предохранители цепи управления, трехполюсный контактор, реле максимального тока, контактные зажимы цепей управления и линейных проводов, пусковая кнопка и трансформатор цепей управления.

Рассмотрим электрическую схему защитной панели ПЗКБ-160 (рис. 36). Цепь управления показана тонкими линиями, силовая цепь - жирными линиями. Пояснение схемы силовой цепи будет дано ниже. В данный момент рассмотрим схему цепи управления без элементов, расположенных правее пунктирной линии, соединяющей точки.

Из приведенной схемы видно, что подача напряжения к катушке контактора Л возможна после нажатия на кнопку KB, когда рукоятки всех контроллеров КП, КТ, КМ поставлены в нулевое положение, включен аварийный выключатель АВ, замкнуты контакт люка КЛ, контакт дверей кабины КД, включена ключ-марка КМ и замкнуты контакты максимального реле MP. После включения линейного контактора Л замыкаются его блок-контакты Л в цепи управления, шунтирующие кнопку КВ. При этом создается замкнутая цепь: провод Л1, катушка Л, контакты MP, КМ, КД, KЛ, АВ, КМ, КВМН, КВТН, КТ, КП, блок-контакт Л, провод Л2.

При выводе контроллеров из нулевого положения в рабочее цепь не размыкается, так как ток проходит не через нулевые контакты контроллеров, а через цепь с блок-контактом Л, и катушка линейного контактора запитывается по параллельной цепи.

Рис. 1. Электрическая схема защиты кранов.

Вторая замкнутая цепь образуется при включении контакторов ВМ или НМ, что осуществляется контактами контроллера передвижения К11М или К9М. При этом в цепи размыкаются контакты взаимной блокировки НМ или ВМ, предохраняющие от одновременного включения этих контакторов.

При срабатывании конечных выключателей механизма передвижения моста КВМН, КВМВ линейный контактор Л не отпадает, а отключается только контактор направления ВМ или НМ и механизм передвижения останавливается. Линейный контактор отключится при срабатывании любого другого концевого выключателя или прибора безопасности. В этом случае отключаются контакты Л в силовой цепи и механизмы обесточиваются. Для пуска рукоятки контроллеров необходимо снова поставить в нулевое положение и нажать на кнопку КВ.

Реверсирование. Для реверсирования, т.е. изменения направления вращения двигателей, применяют контакторы или реверсивные магнитные пускатели. На рис. 37, а показана схема реверсивной контакторной панели, а на рис. 2 - схема реверсивного магнитного пускателя. Для реверсирования двигателей достаточно двух двухполюсных контакторов. При повороте рукоятки контроллера подается напряжение в цепь управления и включается катушка, которая замыкает верхнюю пару контактов линии 1-11 и 3-12. При этом двигатель вращается в направлении Вперед. При подаче напряжения в цепь управления, что соответствует повороту контроллера в противоположную сторону, включаются катушка Я и нижняя пара силовых контактов, замыкая линии 1-12 и 3-11. В этом случае двигатель вращается в направлении Назад.

Рис. 2. Схема реверсирования. а - с помощью контакторной панели: б - с помощью магнитных пускателей.

Реверсивный магнитный пускатель состоит из двух трехполюсных пускателей, имеющих взаимную механическую и электрическую блокировку. При замыкании контактов универсального переключателя VII включается катушка В пускателя и соответствующими силовыми контактами В замыкаются линии 1-12, 2-13, 3-11. Двигатель вращается в одну сторону. При включении катушки Н замыкаются линии 1-11, 2-13, 3-12, что вызывает изменение порядка чередования фаз электродвигателя, поэтому он вращается в противоположную сторону.

Управление электроприводом. Как указывалось выше, для смягчения пусковых характеристик механизмов применяют пусковые резисторы.

Пусковыми резисторами управляют: – прямым способом, при котором цепи сопротивлений подключаются непосредственно к зажимам контроллера, установленного в кабине крана; – дистанционным способом, когда цепи резисторов включаются контакторами магнитной панели, управляемой с помощью командоконтроллера, установленного в кабине.

На рис. 3 приведена схема управления электроприводом крана прямым способом. На схеме показаны контроллер КМ типа ККТ-62А, два пусковых резистора ПС1 и ПС2 типа НФ-2А, два двигателя Ml и МЗ и два электрогидротолкателя тормоза М2, М4. На первой позиции контроллера обмотки роторов замыкаются на полный комплект сопротивлений, на второй позиции включаются контакты контроллера, часть резистора отключается. Двигатель переходит на более жесткую характеристику, его частота вращения возрастает и т. д. На пятой позиции контроллера все резисторы отключены, обмотки роторов замкнуты накоротко, двигатели работают на естественных характеристиках, где скорость достигает наибольшего значения.

В качестве примера дистанционного способа регулирования пуска электродвигателя с фазным ротором на рис. 4 приведена электрическая схема управления механизма передвижения. Управляют пуском электродвигателя и регулируют частоту вращения в этом случае с помощью контроллера КК типа ККТ-61А. Однако здесь контроллер работает в цепи управления как командоконтроллер, а пускорегулирующие резисторы коммутируют с помощью магнитного контроллера. При включении рубильника В напряжение через катушки реле максимального тока РТ1 и РТ2 подается к неподвижным контактам контакторов К1 и К2. На нулевой позиции ком андоконтроллера КК втягивающая катушка промежуточного реле Р1 получает питание по цепи: провод 010, замкнутые контакты КК, УП1, РТ1, РТ2, УП1, провод 037. Реле Р1 замыкает свои контакты в цепях 020-023 и 025-036.

Рис. 3. Схема управления электроприводом крана прямым способом.

Рис. 4. Схема управления электроприводом дистанционным способом. а - силовая цепь; б - цепь управления.

При установке рукоятки командоконтроллера КК на первую позицию положения Вперед замыкается контактор К1 - При этом включаются электродвигатели Ml, МЗ, М5 и М7 механизма передвижения и М2, М4, Мб, М8 гидротолкателей тормозов. При переводе командоконтроллера на вторую позицию питание получает катушка контактора Кб, который замыкает секции пусковых резисторов в цепях роторов двигателей передвижения. Дальнейший поворот рукоятки контроллера последовательно включает катушки контакторов К7, К8 и К9. На последней позиции все сопротивления зашунтированы, т.е. роторы электродвигателей замкнуты накоротко, поэтому двигатели работают на естественных характеристиках. При переводе рукоятки командоконтроллера КК в сторону Назад на первой позиции включается катушка контактора К2. В результате изменения порядка подключения фаз двигатели вращаются в обратную сторону.

При срабатывании каждого из реле РТ1 и РТ2 на любой позиции контроллера размыкается размыкающий контакт одного из этих реле, катушка Р1 окажется обесточенной и разомкнет свои контакты в цепи катушек K1, К2. Силовая цепь окажется разомкнутой, кран остановится. Дальнейший пуск электропривода станет возможным только после возвращения рукоятки командоконтроллера в нулевое положение.

Особенности управления магнитным контроллером типа ТСАЗ-160. У магнитных контроллеров ТСА и КС первое и второе положения контроллера служат для спуска с пониженной скоростью грузов выше 50% от номинального. При этом на первом положении спуска возможна работа только с номинальным грузом. Для спуска тяжелых грузов на первом и втором положениях необходимо включить педаль НП. Тогда в первом положении включается реле 1РУ, 2РУ. Включатся при нажатой педали и контактор противовключения П, контактор В, контактор пуска КП, контактор тормоза Т и реле блокировки РБ.

При втором положении командоконтроллера контактор П противовключения отключается. На первом и втором положениях двигатель работает в режиме противовключения.

Груз массой, меньшей 50% номинального, на первом и втором положениях командоконтроллера опускаться не будет. Его опускание возможно только в третьем положении командоконтроллера. В третьем положении командоконтроллера включаются контакторы Н и О. Это вызывает включение двигателя в режим однофазного торможения. Контакторы Я и О включают реле блокировки РБ, которое включает контактор Т - механизм растормаживается. Цепь контакторов В и КП разорвана блок-контактами Я и О. В этом же положении последовательно включаются контакторы 1У, 2У. Контактор 2У разрывает цепь реле 1РУ, которое в свою очередь включает с выдержкой времени контакторы ЗУ и 4У, т.е. заворачиваются пусковые резисторы.

Рис. 5. Принципиальная схема электропривода подъема с магнитным контроллером ТСАЗ-160. а - силовая цепь; б - цепь управления; М двигатель; ТМ - тормозной магнит; Т - контактор тормозного магнита; КП- контактор пуска; В, Н- контакторы направления вращения двигателя; О - контактор однофазного торможения; П - контактор противовключения; 1У-4У- контакторы ускорения; MP - реле максимального тока; РБ - реле блокировочное; 1РУ, 2РУ - реле ускорения; КВВ, КВН - конечные выключатели; ВС - выпрямитель селеновый; R1-R2 - добавочные резисторы; НП - ножная педаль; Р - рубильник; 1П, 2П - предохранители.

К атегория: - Электрическое оборудование

На рисунке 11.1 приведена схема наиболее распространенного в промышленности мостового крана, состоящего из следующих составных частей: кабины управления 1 , механизма передвижения крана 2 , кабеля электропитания грузовой тележки 3, электрооборудования 4 , моста крана 5 , грузовой тележки 6 , уста­новки главного токоприемника 7 , кабины для обслуживания трол­леев 8.

Рисунок 11.1

Крановый мост опирается на ходовые колеса и перемещается по подкрановым путям, уложенным на выступах верхней части стены цеха. Ходовые колеса крана приводятся во вращение механизмами передвижения крана, которые состоят из раздельных приводов, установленных на площадках пролетного строения моста.

Тележка движется по двум рельсам, закрепленным на глав­ных балках моста. Электрооборудование размещено на площадках моста, на тележке и в кабине управления. Питание крана осуще­ствляется через жесткие уголковые троллеи, размещенные вдоль подкрановых путей.

Питание механизмов тележки осуществляется через гибкий кабель, подвешенный на специальном монорельсовом пути при помощи подвижных кареток.

Режим работы грузоподъемной машины циклический. Цикл состоит из перемещения груза по заданной траектории и возврата машины в исходное положение для нового цикла. В цикле работы крана время включения (работы) любого из его механизмов чередуется с временем пауз этого механизма (пока включен другой механизм, происходит застроповка или расстроповка груза либо технологическая пауза).

В настоящее время применяются различные системы управления электроприводами мостовых кранов. Одной из наиболее совершенных является система электроприводов переменного тока с частотными преобразователями и управлением от контроллера, схема которой показана на рисунок 11.1. В качестве частотных преобразователей используются преобразователи MOVITRAC -31 С110-503-4-00 и С370-503-4-00 фирмы SEWErodrive , которые выполняются с промежуточным звеном постоянного тока и синусоидальной широтно-импульсной модуляцией (ШИМ) выходного напряжения инвертора. Устройства подключаются непосредственно к трехфазной сети переменного тока напряжением от 3×380 до 3×500 В и частотой 50 (60) Гц. Они обеспечивают изменение трехфазного выходного напряжения до значения напряжения сети с пропорционально увеличивающейся выходной частотой до настраиваемого значения базовой частоты, находящейся в интервале 50...150 Гц (для специальных характеристик от 5 до 400 Гц). Эта особенность позволяет управлять трехфаз­ными АД с постоянным моментом до достижения номинальной частоты, а выше нее – с постоянной мощностью.

Пост оператора реализован на базе клавишной панели FBG 31С-01, в состав которой входят текстовый дисплей с подсвет­кой, тремя языками на выбор и мембранная панель с шестью клавишами. На дисплей выводятся расширенное и краткое меню параметров. Клавишная панель обеспечивает: отображение выход­ной частоты, тока, температуры и других измеряемых величин; фиксацию неисправностей; считывание и коррекцию всех пара­метров; сохранение данных. Для управления механизмами подъема и передвижения исполь­зуются эргономичные ручные манипуляторы типа «джойстик».

Система управления электроприводами мостового крана реа­лизована на контроллере с возможностью его связи с ПК по пос­ледовательному интерфейсу RS-485 для обмена информацией с верхним уровнем управления и уровнем дистанционного управ­ления.

11.2.2 Система управления козловым краном

Козловые краны применяют в основном при строительстве зда­ний, погрузке и разгрузке судов в морских или речных портах. Выполнение погрузочно-разгрузочных и других видов работ обес­печивают несколько электроприводов различной мощности. В ка­честве приводов применяют электродвигатели переменного тока с регулированием от преобразователя частоты. Рассмотрим систе­му управления козловым (портальным) полноповоротным кра­ном типа «Сокол».

Схема крана представлена на рисунке 11.2, где 1 – механизм разво­рота грузовой траверсы; 2 – механизм изменения вылета стрелы; 3- машинное отделение; 4,8 – механизмы поворота; 5 - барабан для намотки кабеля; 6 - кабина; 7 – центральный токосъемник; 9, 15 - тупиковые концевые выключатели; 10 - концевой выклю­чатель кабеля; 11,14 - механизмы передвижения; 12,13 - рельсо­вые захваты; 16 - концевой выключатель перепасовки.

Рисунок 11.2

В машинном отделении размещаются: пульт управления, стан­ция оператора (дисплей ОР27), электродвигатели переменного тока механизмов подъема и механизма замыкания, электродвигатели вентиляторов, толкатели тормозов, преобразователи частоты, кон­троллер с интеллектуальными модулями ввода и вывода, кабель­ный канал связи контроллера с пультами управления, станция управления замыканием грейфера.

Система управления краном построена на базе контроллера SIMATIC S 7-400 фирмы Siemens . Все управление ме­ханизмами осуществляется с использованием промышленных се­тей Sinec L 2 и Profibus - DP . Связь основных подсистем системы управления осуществляется посредством интеллектуального мо­дуля ЕТ200Н и вышеперечисленных сетей. Система управления реализует следующие алгоритмы работы: управление подъемным и замыкающим приводом крана, управление стрелой, управление поворотом, управление передви­жением крана, управление рельсовыми захватами, одновремен­ная работа нескольких механизмов, аварийный режим.

      Системы управления лифтами

Основными частями лиф­та являются: лебедка, каби­на, противовес, направляю­щие для кабины и противо­веса, двери шахты, ограни­читель скорости, тяговые ка­наты и канат ограничителя скорости, узлы и детали при­ямка, электрооборудование (включая систему управления).

В механизмах подъема лифтов применяют различные типы элек­троприводов.

В нерегулируемом приводе используют одно- и двухскоростные двигатели переменного тока. Односкоростной нерегулируемый асинхронный привод применяется в тихоходных лифтах с невысокими требованиями к точности остановки кабины. Силовая схе­ма привода включает в себя односкоростной асинхронный двига­тель с короткозамкнутым ротором. Контакторы обеспечивают вклю­чение двигателя для движения кабины вверх и вниз за счет изме­нения чередования фаз питающего напряжения. Электромагнит­ный тормоз получает питание через выпрямитель и обеспечивает отпускание тормоза при включении привода и ввод в действие тормоза при отключении привода, когда кабина подходит к этажу назначения.

В двухскоростном асинхронном приводе лифта используется двигатель с короткозамкнутым ротором и двумя статорными обмотками большой и малой скорости. В обмотке малой скорости лифтовых двигателей число пар полюсов обычно в три, четыре или шесть раз превышает число пар полюсов обмотки большой скорости, что обусловливает уменьшенную в такое же число раз синхронную скорость.

Регулируемый привод постоянного тока обеспечивает аналогич­ные условия и применяется для формирования диаграммы дви­жения кабины лифта, близкой к оптимальной, а также высокую точность остановки кабины.

В современных лифтах используются два принципа управления: разомкнутый и замкнутый. При разомкнутом принципе для управления приводом лебедки используются сигналы, формируемые в логической управляющей системе (станции управления). Возможные изменения параметров кабины и лебедки в процессе работы не учитываются.

Замкнутый принцип позволяет учитывать все изменения парамет­ров и управлять приводом по сигналам, получаемым от логичес­кой управляющей системы, а также учитывать результаты функ­ционирования привода. Вследствие этого система управления приводом дает возможность увеличить точность останов­ки, повысить плавность движения кабины.

Система частотного регулирования ско­рости асинхронного электропривода OVF 20 фирмы Otis выполнена на основе ШИМ и состоит из двух основных узлов: управляющей платы МСВ II и силовой части. Функциональная схема OVF 20 представлена на рис. 11.3.

Си­ловая часть состоит из схемы подключения к электрической сети и преобразователя, состоящего из неуправляемого трехфазного двухполупериодного выпрямителя, линии связи по постоянному току и трехфазного инвертора. Напряжение трехфазной электрической сети выпрямляется и сглаживается фильтром в линии связи по постоянному току, пос­ле чего транзисторный инвертор с помощью заданной последовательности коммутации IGBT -транзисторов преобразует напряжение посто­янного тока посредством ШИМ в трехфазное переменное напря­жение с переменной частотой. Транзисторы обеспечивают высо­кую скорость переключения (с несущей частотой 10 кГц).

Рисунок 11.3

Информация о выходных значениях принимается с датчика скорости BR, находящегося на валу электродвигателя. Применя­ется двухканальный (трековый) энкодер со сдвигом фаз сигналов на 90° GBA 633 A 1 (по 1024 импульса на каждый трек). Контроллер MCS 220 обменивается сигналами с OVF 20 (сигнал управления VI ... V 4 , кодируемый четырьмя бита­ми; UIB , DIB , NOR – сигналы, кодируемые одним битом каждый; сигналы текущего состояния лифта DS 1 ... DS 3 , кодируемые тремя битами). Сигналы UIB , DIB , NOR представляют собой дан­ные, определяющие начальное состояние системы OVF 20 перед работой, т. е. лифт работает в режиме обучения «вверх-вниз» или в нормальном режиме.

Замкнутый контур контроля скорости гарантирует точное и комфортное поведение привода в каждый момент работы. Изме­ренная скорость электродвигателя вводится в регулятор скорости типа ПИ-регулятора. Динамическая точность регулирования ско­рости (время устранения системой регулирования ошибки по ско­рости) высока.

Алгоритм работы системы управления (рисунок 11.4) состоит из основного алгоритма, алгоритма подпрограмм, реализующих различные ре­жимы работы системы управления (ревизии, деблокировки, управления из машинного помещения, нормальной работы, по­жарной опасности), и алгоритмов дополнительных подпрограмм, реализующих типовые действия, производимые в режиме нор­мальной работы (движение лифта по приказу, остановка каби­ны на этаже).

Рисунок 11.4

Алгоритм начинается с включения лифта и работу (блок 1 ), после чего начинается постоянный контроль цепи безопасности (2 ). Если цепь разомкнута, происходит ава­ рийная остановка лифта (3 ). В зависимости от причины аварийной остановки применяется режим деблокировки (5 ), если кабина лифта установилась на ловители или конечные выключатели, либо производится определение и устранение другого рода сбоя в системе (6 ). Блоки 7...9 определяют необходимость вклю­чения того или иного режима работы лифта, блоки 10...12 реа­лизуют соответствующие подпрограммы. Программа продолжает свою работу до тех пор, пока не будет выполнен принудитель­ный останов лифта.

Схема алгоритма подпрограммы, реализующей режим нормаль­ной работы, приведена на рисунке 11.5.

Рисунок 11.5

В этом режиме производятся контроль пожарной безопасности (2 ), регистрация и выполнение всех вызовов и приказов, контроль загруженности кабины. Этот алгоритм составлен с учетом работы системы с собирательным управлением вниз, т.е. выполняются попутные вызовы при движении кабины вниз (если загрузка менее 90 % от номинальной), Таким образом, в подпрограмме реализуются ожидание и регист­рация вызова (3 , 4 ), проверка нахождения кабины лифта на этаже вызова (5 ). В зависимости от этого осуществляется открытие дверей кабины с последующей работой лифта по приказу (6, 7 ) или проверяется условие занятости кабины (8 ). Если кабина сво­бодна, то блоки 9… 20 осуществляют выбор направления движе­ния кабины и в зависимости от этого после получения приказа выполняются попутные вызовы при движении вниз (если они за­регистрированы) (14... 20 ) или движение кабины на наивысший из этажей, с которых поступили вызовы, а затем после получе­ния приказа собирательное управление для движения вниз.

Если при регистрации вызова кабина занята, вызов выполня­ется при попутном следовании кабины при условии, что она за­гружена менее чем на 90 % номинальной загрузки. В противном случае (рисунок 11.6) ожидают, пока кабина не освободится или не проследует в попутном направлении, загруженная менее чем на 90% (21 ...29 ).

Краном мостового типа называется подъемный кран с грузозахватным устройством, подвешенным к грузовой тележке или тали, которые перемещаются по подвижной стальной конструкции (мосту). Благодаря своей конструкции мостовой кран может перемещать груз в любую точку рабочей площади ограниченной длинами подкрановой и пролетной балок.

Мостовой кран условно можно разделить на две основные группы элементов: механические узлы и электрооборудование , позволяющее управлять работой крана.

Механические узлы мостового крана

Мост крана , который также имеет другое название – пролётная балка – это несущая конструкция крана, предназначенная для движения по ней грузовой тележки. Мост крана состоит из одной или двух пролетных балок, соединенных с концевыми балками, которые в свою очередь могут передвигать всю конструкцию мостового крана по подкрановым балкам. На мосту крана могут располагаться одна или две грузовые тележки, на одном или двух независимых путях.

Или просто крановая тележка предназначена для перемещения и подъема груза вдоль пролета (пролетной балки мостового крана). Конструкция тележки представляет собой раму, сваренную из поперечных и продольных балок, которая опирается на ходовые колеса и имеет очень жесткую конструкцию. На раме тележки располагается подъемный механизм (вспомогательного и основного подъемов), механизм для передвижения самой тележки вдоль моста крана, токоприемник, а также устройства безопасности. На однобалочных мостовых кранах устанавливают таль или тельфер, двухбалочный кран оснащают грузовой тележкой.

Таль или тельфер – подвесное грузоподъёмное устройство с ручным или механическим приводом (обычно электрическим). Тали широко применяются как в качестве самостоятельного грузоподъемного механизма, так и в тележках однобалочных мостовых кранов.

Таль с электрическим приводом (тельфер) представляет собой лебедку с редуктором, электродвигателем, барабаном или звёздочкой, тормозом и крюковой подвеской. Различают тали стационарные и передвижные (механизированные), подвешенные к специальным тележкам, перемещающимся по подвесным монорельсовым путям.

Балка концевая является составной частью мостового крана и выполняет функции механизма передвижения моста крана по расположенными перпендикулярно подкрановым путям и одновременно служит в качестве опоры моста. Балка концевая состоит из корпуса, колесных блоков и мотор-редуктора. Балки концевые, входящие в состав крана мостового, принято называть комплектом концевых балок.

Подкрановый путь служит для перемещения мостового крана по подкрановой балке. Для мостового крана подкрановый путь может быть выполнен опорным (для опорных мостовых кранов) и подвесным (для подвесных мостовых кранов). В зависимости от этого подкрановый путь может быть двух типов: рельсовый или балочный. В качестве рельсов применяется квадратная или полосовая сталь, железнодорожные рельсы или специальные крановые рельсы.

Подкрановые балки – это основной несущий элемент крановой конструкции, воспринимающий и передающий крановые нагрузки на неподвижное основание и обеспечивающий безопасную работу крана на всем пути его передвижения. На подкрановой балке находится подкрановый путь. Подкрановые балки могут быть выполнены из металлических балок или железобетона. Подкрановые балки являются конструктивным элементом крановой эстакады.

– это глобальное инженерное сооружение, состоящее из опор и пролетного горизонтального строения, являющегося несущей конструкцией для мостового крана. Крановая эстакада может устанавливаться в производственном помещении или под открытым небом.

Крановая эстакада встроенного типа используется в производственных помещениях или цехах и устанавливается на опоры. В качестве опор могут быть использованы колонны цеха, на которых и устанавливаются подкрановые балки. Также крановая эстакада может иметь самостоятельную конструкцию. В этом случае в качестве опор используют колонны или фермы из металлоконструкций с фланцевым основанием.

На площадках открытого типа, под открытым небом, устанавливается открытая крановая эстакада. Колонны эстакады при этом устанавливаются на собственном фундаменте.

В соответствии с Правилами для удобного и безопасного обслуживания кранов, их механизмов и электрического оборудования, расположенных вне кабины, в конструкции мостовых кранов предусматривается устройство соответствующих галерей , площадок и лестниц .

По типу подвески моста крана мостовые краны делятся на опорные и подвесные .

Опорный мостовой кран – это кран, концевая балка которого опирается на рельсы подкранового пути, расположенные сверху подкрановой балки.

Подвесной мостовой кран – это кран, концевая балка которого крепится на подкрановый путь, расположенный на нижнем поясе тавровых или двутавровых подкрановых балок.

По количеству пролетных балок мостовые краны делятся на однобалочные и двухбалочные . В соответствии с этим мостовой кран имеет либо одну, либо две пролетные балки. Двухбалочные краны устойчивее, имеют более равномерное распределение нагрузок от груза и могут поднимать больший вес.

Кабина управления располагается на мосту крана в месте, обеспечивающем наилучший обзор и безопасность работы крановщика, чаще всего ее располагают по краям или в середине пролета моста крана. Иногда кабину управления подвешивают к грузовой тележке. В некоторых случаях для улучшения обзорности кабина имеет возможность автономно перемещаться вдоль пролета крана.

Электрооборудование мостового крана

Электрооборудование мостового крана разделяют на основное , обеспечивающее передвижение моста и грузовой тележки и подъем/опускание груза, и вспомогательное , выполняющее различные дополнительные функции, напрямую не связанные с основной работой крана.

Основное оборудование

  • электродвигатели переменного тока;
  • системы управления – контроллеры, контакторы, реле управления, магнитные пускатели, рубильники и прочая аппаратура, позволяющая осуществлять управление электродвигателями;
  • электромагниты, электрогидравлические толкатели и другие устройства, обеспечивающие работу стопорных тормозов;
  • автоматические выключатели, предохранители, реле тока и другие устройства электрической защиты;
  • ограничители грузоподъемности, ограничители движения в крайних положениях и другие устройства механической защиты.

Вспомогательное оборудование

  • дополнительное осветительное оборудование;
  • приборы звуковой сигнализации;
  • приборы обогрева (электропечь в кабине управления краном);
  • измерительная аппаратура;
  • дополнительная защита.

Электропитание механизмов

Подвод электропитания к элементам крана может осуществляться двумя способами: троллейными линиям или гирляндными кабельными системами.

В конструкцию мостового крана входят такие элементы электрооборудования, как электрошкаф, пульт управления, токопровод и др.

– это металлический ящик, в котором находится электрическое оборудование крана – контроллеры, контакторы, реле управления, магнитные пускатели, резисторы, частотные преобразователи, рубильники и прочая аппаратура, позволяющая осуществлять управление электродвигателями.

Управление мостовым краном может быть пультовым (оператор управляет краном при помощи пульта управления с пола) или из кабины управления, установленной на мостовом кране. В зависимости от этого мостовой кран может быть оснащен либо пультом управления, либо кабиной управления.

Пульт управления – это устройство для контроля и управления крановым оборудованием. Пульты управления подразделяются на подвесные пульты и пульты с радиоуправлением .

Подвесной пульт управления может иметь независимое передвижение вдоль пролетной балки, подвешен к электрошкафу или перемещаться совместно с крановой тележкой вдоль моста крана.

Пульт с радиоуправлением осуществляет управление краном по каналу радиосвязи и не связан с краном проводами.

Токопровод для мостового крана обеспечивет подачу электроэнергии от сети на движущийся кран, а также его механизмы. Токопроводы бывают двух типов – троллейный и гибкий.

Троллейный токопровод к мостовому крану осуществляется при помощи троллеев жесткого типа и токоприемников, скользящих по ним при движении крана. Но чаще всего, из-за простоты и удешевления конструкции используют токоподвод с гибким кабелем – гирляндный токопровод . Токопровод с гибким кабелем (гирляндного типа) часто применяют для питания грузовых тележек и обязательно – при работе кранов в пожаро- и взрывоопасных средах.

Последние материалы сайта